Approaches to the study of a water object stability to changes of parameters of habitat and anthropogenic regimes

Stability of water objects

- Stability is an ability of a system to safe its parameters under internal and external loading
- Adaptive stability is a possibility of system to adapt to new conditions
- Regeneration stability is a possibility of a system to return back to its original conditions
- Ecological well-being
- vulnerability –opposite to "stability"

1. Mark –index estimation of water object stability to change of parameters of habitat and anthropogenic regimes

- Water object : lakes, ponds, reservoir, etc.
- The aim is an estimation of an adaptation stability
- Stability to:
 - Changing of natural habitat parameters (temperature, illumination, biogenic elements content...);
 - Increasing of eutrophication;
 - Changing of water quality

1. Mark –index estimation of water object stability to change of parameters of habitat and anthropogenic regimes

- There are three classifications:
 - Of morphometrical parameters (three parameters)
 - Of a hydrological regime (three parameters)
 - Of a water cycle (five parameters)
- Each parameter has a personal index (from 1 to 5). Choose the index of parameters for your water objects.
- Sum of indexes of each classification parameters gives three categories

 \sum indexes of parameters = category

Classification of morphometrical parameters of water objects

Tabl.1

parameters	index			
	1	2	3	4
Water-surface area, m ²	>1000	101-1000	10-100	<10
Volume, m ³	>10	1,1-10	0,5-1,1	<0,5
Maximum depth, m	>50	11-50	5-10	<5

sum of parameters is from 3 to 4 - The 1st category ; sum of parameters is from 5 to 7 - The 6th category ; sum of parameters is from 8 to 11 - The 11th category ; sum of parameters is from 11 to 12 - The 15th category .

Classification of hydrological regime of water objects Tabl.2

parameters	index				
	1	2	3	4	5
Amplitude of water level fluctuations, m	<3	-	3-10	-	>10
Average water temperature in summer, °C	>25	20-25	15-20	-	<15
Ice-covering period, months	>5	2-5	<2	_	-

Σ

sum of parameters is from 2 to 4 - The 1st category ; sum of parameters is from 5 to 7 - The 2nd category ; sum of parameters is from 8 to 11 - The 3rd category .

Classification of water objects cycle

Т	a	h	ろ
	Q		.0

parameters	index		
	1	2	3
Seasonal stratification availability	yes	not	-
Vertical mixing (how many times per year)	<2	2	>2
Flowage condition	internal- drainage	drain	circulating water reservoir
Character of regulation	perennial	seasonal	Weekly, daily
Water cycling per year	<0,1	0,1-5,0	>5

sum of parameters is 5 - The 1st category ; sum of parameters is from 6 to 8 - The 2nd category ; sum of parameters is from 9 to 14 - The 3rd category . Marks estimation of water object stability to changing of physical-chemical, hydrological, trophic, and water quality parameters

 \sum category \rightarrow symbol and marks of a stability family (tabl.4)

Family of stability				
symbol	marks			
IA	3-5	8		
ΙB	6-9	4		
II A	10-11	13		
II B	12-14	10		
III A	15-16	18		
III B	17-19	15		
IV A	20-21	22		
IV B	22-23	20		

Tabl.4.1

Marks estimation of water object stability to changing of physical-chemical, hydrological, trophic, and water quality parameters

 \sum category \rightarrow symbol and marks of a stability family (tabl.4)

Tabl.4.2

Type of stability by trophic status and water quality			
Trophy or water quality Marks			
Eutrophic	1		
Mesotrophic	5		
Oligotrophic	15		
or:			
Dirty (V-VI)	1		
Polluted (III-IV)	5		
Clean (I-II)	15		

Marks estimation of water object stability to changing of physical-chemical, hydrological, trophic, and water quality parameters

Tabl.4.3

\sum category \rightarrow symbol and marks of a stability family (tabl.4)

Combination of families and Types				
symbol	Sum of marks	symbol	Sum of marks	
I B 1	5	III B 1	16	
I B 2	9	III B 2	20	
I B 3	19	III B 3	30	
I A 1	9	III A 1	19	
I A 2	13	III A 2	23	
I A 3	23	III A 3	33	
II B 1	11	IV B 1	21	
II B 2	15	IV B 2	25	
II B 3	25	IV B 3	35	
II A 1	14	IV A 1	23	
II A 2	18	IV A 2	27	
II A 3	28	IV A 3	37	

Classes of water object stability

 \sum category \rightarrow symbol and marks of a stability family (tabl.4)

Tabl.5

Class of stability	Marks	Symbol of combination	
l (maximum)	5-11	I B 1, I B 2, I A 1, II B 1	
II	13-16	I A 2, II A 1, II B 2, III B 1	
	18-23	I B 3, I A 3, III B 2, II A 2, III A 2, IV B 1, IV A 1	
IV	25-28	II B 3, II A 3, IV B 2, IV A 2	
V (minimum)	30-37	III B 3, III A 3, IV B 3, IV A 3	

The method of summary parameters

- The 1st stage: selection of parameters *qi*, quality metering scale building for each class of state
 The Order terms of the state
 - The 2nd stage: normalization of parameters

$$q_i \in [0;1]$$

direct relation

$$q_{i} = q_{i}(x_{i}) = \begin{cases} 0, & x_{i} \leq \min_{i}, \\ \left(\frac{x_{i} - \min_{i}}{\max_{i} - \min_{i}}\right), & \min_{i < x_{i} \leq \max_{i}, \\ 1, & x_{i} > \max_{i}. \end{cases} \qquad q_{i} = q_{i}(x_{i}) = \begin{cases} 1, & x_{i} \leq \min_{i}, \\ \left(\frac{\max_{i} - x_{i}}{\max_{i} - \min_{i}}\right), & \min_{i < x_{i} \leq \max_{i}, \\ 0, & x_{i} > \max_{i}. \end{cases} \end{cases}$$

The method of summary parameters

- The 3rd stage: interpreter function selection of integral index
 - qi normalized parameter,
 - pi weighting coefficient,
 - i=1,...,n, n number of estimation criteria
- The 4th stage: taking weighting coefficients into account
- The 5th stage: integral index building (calculation)

 $I = \sum q_i p_i,$ $q_{i} \in 0;1$ $p_i \in [0;1], \sum p_i = 1$ $p_1 = p_2 = p_3 = \dots,$ $p_1 = p_2 > p_3 = p_4$ $p_{i} =$

Zoning of Lake Ladoga on isobaths, in view of current directions

- 1 northern coastal
- 2 northern
- 3 ultradeep
- 4-deep
- 5 southern
- 6-southern coastal

The Results of a research of a water object stability to changes of parameters of habitat and anthropogenic regimes

Area of Lake	Q	Class	Q 1,000 — I клас I клас
1	0,281	IV	0,800 ПУ кла
2	0,264	IV	— V клас
3	0,274	IV	0,600 -
4	0,276	IV	0,400 -
5	0,178	IV	0,200 -
6	0,186	IV	
As a whole	0,397	111	Ladoga

